XDI analysis of STOP

Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity

Processing AND/IF input stream:
-----------------------------------------------------------------------------
  1> (AND/IF_1.0
  2>   (NFA
  3>     (NAME STOP)
  4>     (INTERPRETATION Verhoeff/XDI)
  5>     (SYMBOLS 
  6>       (a0 INPUT)
  7>       (a1 OUTPUT)
  8>     )
  9>     (STATES
 10>       (0 INITIAL BOX)
 11>       (1 BOX)
 12>     )
 13>     (TRANSITIONS
 14>       (0 1 a0)
 15>     )
 16>   )
 17> )
-----------------------------------------------------------------------------


Statistics

2 symbols:
1 input and 1 output
2 states:
0 demanding, 2 indifferent and 0 transient
1 transition:
1 input and 0 output
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


Automorphisms (symmetries)

There is 1 automorphism.
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


Finest Semi-independent Partition

/ a0 / a1 /
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


Choice, Order Dependence, Nondeterminism

Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


Distances

All states are reachable from the initial state:
[ + == 9 < distance < +inf , . == distance = +inf ]
  01
0:01

Initial state not reachable from 1 state: 1
There is 1 state pair where one state is unreachable from the other state.

Shortest paths from initial state:
0:
1:a0 

Distribution of distances from initial state:
[d=distance, h=occurrence count, c=cumulative occurrence count]
d:h[c]
0:1[1]
1:1[2]
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


Autocomparison Matrix

There is 1 state pair (x,y) where x refines y outside the diagonal:
(0[],1[])
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


XDI Validity

'STOP' is a valid XDI specification.

Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


XDI State Graph Tool, Version 2.0 (Feb 17 1998 20:34:43)
Copyright © 1995-1997 Eindhoven University of Technology