XDI analysis of DI Select
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
Processing AND/IF input stream:
-----------------------------------------------------------------------------
2> (AND/IF_1.0
3> (NFA
4> (NAME DI Select)
5> (INTERPRETATION Verhoeff/XDI)
6> (NOTE Generated by digg v1.0)
7> (SYMBOLS
8> (t INPUT)
9> (b INPUT)
10> (a OUTPUT)
11> (q0 OUTPUT)
12> (q1 OUTPUT)
13> )
14> (STATES
15> (0 BOX INITIAL)
16> (1 TRANSIENT)
17> (2 TRANSIENT)
18> (3 TRANSIENT)
19> (4 BOX)
20> (5 TRANSIENT)
21> (6 TRANSIENT)
22> (7 TRANSIENT)
23> (8 TRANSIENT)
24> (9 TRANSIENT)
25> (10 TRANSIENT)
26> (11 TRANSIENT)
27> (12 TRANSIENT)
28> (13 TRANSIENT)
29> (14 TRANSIENT)
30> (15 TRANSIENT)
31> )
32> (TRANSITIONS
33> (0 1 t)
34> (0 2 b)
35> (1 3 b)
36> (1 0 q0)
37> (2 3 t)
38> (2 4 a)
39> (3 8 a)
40> (3 2 q0)
41> (3 9 q1)
42> (4 5 t)
43> (4 6 b)
44> (5 7 b)
45> (5 4 q1)
46> (6 7 t)
47> (6 0 a)
48> (7 11 a)
49> (7 12 q0)
50> (7 6 q1)
51> (8 15 b)
52> (8 4 q0)
53> (8 4 q1)
54> (9 10 t)
55> (9 4 a)
56> (10 5 a)
57> (10 9 q1)
58> (11 14 b)
59> (11 0 q0)
60> (11 0 q1)
61> (12 13 t)
62> (12 0 a)
63> (13 1 a)
64> (13 12 q0)
65> (14 8 a)
66> (14 2 q0)
67> (14 2 q1)
68> (15 11 a)
69> (15 6 q0)
70> (15 6 q1)
71> )
72> ))
-----------------------------------------------------------------------------
-
- 5 symbols:
- 2 input and 3 output
- 16 states:
- 0 demanding, 2 indifferent and 14 transient
- 38 transitions:
- 12 input and 26 output
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
-
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
-
/ t q0 q1 / b a /
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
- Maximally Transient
- No Disabling Inputs (Zinp)
- Disabling outputs (Zout) in state(s):
- 3 7 8 11 14 15
- Order-Independent input (Yinp)
- Order-Dependent output (Yout) in state(s):
- 2 6
- Output refusal sets do NOT propagate backward over inputs in state(s):
- 1 5
- Output Non-Deterministic
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
- All states are reachable from the initial state:
[ + == 9 < distance < +inf , . == distance = +inf ]
| | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 |
0: | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 4 |
Initial state reachable from all states.
All states reachable from all other states.
- Shortest paths from initial state:
-
0: | |
1: | t |
2: | b |
3: | t b |
4: | b a |
5: | b a t |
6: | b a b |
7: | b a t b |
8: | t b a |
9: | t b q1 |
10: | t b q1 t |
11: | t b a b a |
12: | b a t b q0 |
13: | b a t b q0 t |
14: | t b a b a b |
15: | t b a b |
- Distribution of distances from initial state:
[d=distance, h=occurrence count, c=cumulative occurrence count] -
d: | h | [ c] |
0: | 1 | [ 1] |
1: | 2 | [ 3] |
2: | 2 | [ 5] |
3: | 4 | [ 9] |
4: | 3 | [12] |
5: | 2 | [14] |
6: | 2 | [16] |
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
-
- There are 10 state pairs (x,y) where x refines y outside the diagonal:
- (1\/,11\/) (3\/,14\/) (5\/,8\/) (7\/,15\/) (9\/,2\/) (10\/,3\/) (10\/,14\/) (12\/,6\/) (13\/,7\/) (13\/,15\/)
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
-
'DI Select' is a valid XDI specification.
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
XDI State Graph Tool, Version 2.1.1 (Jun 26 1998 10:51:42)
Copyright © 1995-1997 Eindhoven University of Technology