XDI analysis of Mutual-Exclusion Element

Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity

Processing AND/IF input stream:
-----------------------------------------------------------------------------
  1> (AND/IF_1.0
  2>   (NFA
  3>     (NAME Mutual-Exclusion Element)
  4>     (SYMBOLS 
  5>       (r0 INPUT) (a0 OUTPUT) (r1 INPUT) (a1 OUTPUT)
  6>     )
  7> 
  8>     (STATES
  9>       (0 INITIAL BOX)
 10>       (1 TRANSIENT)
 11>       (4 TRANSIENT)
 12>       (2 BOX)
 13>       (5 TRANSIENT)
 14>       (3 TRANSIENT)
 15>       (6 BOX)
 16>       (7 TRANSIENT)
 17>       (8 BOX)
 18>       (9 BOX)
 19>       (10 TRANSIENT)
 20>       (11 TRANSIENT)
 21>       (12 TRANSIENT)
 22>       (14 TRANSIENT)
 23>       (13 TRANSIENT)
 24>     )
 25>     (TRANSITIONS
 26>       (0 1 r0) (0 4 r1)
 27>       (1 2 a0) (1 5 r1)
 28>       (4 5 r0) (4 8 a1)
 29>       (2 3 r0) (2 6 r1)
 30>       (5 6 a0) (5 9 a1)
 31>       (3 0 a0) (3 7 r1)
 32>       (6 7 r0)
 33>       (7 4 a0) (7 10 a1)
 34>       (8 9 r0) (8 11 r1)
 35>       (9 12 r1)
 36>       (10 8 a0) (10 14 r1)
 37>       (11 12 r0) (11 0 a1)
 38>       (12 13 a0) (12 1 a1)
 39>       (14 11 a0) (14 3 a1)
 40>       (13 14 r0) (13 2 a1)
 41>     )
 42>   )
 43> )
-----------------------------------------------------------------------------

Mutual-Exclusion Element: warning: interpretation not given. Assuming 'Verhoeff/XDI'
Mutual-Exclusion Element: 1 warning, 0 errors.


Statistics

4 symbols:
2 input and 2 output
15 states:
0 demanding, 5 indifferent and 10 transient
28 transitions:
14 input and 14 output
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


Automorphisms (symmetries)

There are 2 automorphisms.
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


Finest Semi-independent Partition

/ r0 a0 / r1 a1 /
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


Choice, Order Dependence, Nondeterminism

Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


Distances

All states are reachable from the initial state:
[ + == 9 < distance < +inf , . == distance = +inf ]
             11111
   014253678901243
 0:011223342353465

Initial state reachable from all states.
All states reachable from all other states.

Shortest paths from initial state:
 0:
 1:r0 
 4:r1 
 2:r0 a0 
 5:r0 r1 
 3:r0 a0 r0 
 6:r0 a0 r1 
 7:r0 a0 r0 r1 
 8:r1 a1 
 9:r0 r1 a1 
10:r0 a0 r0 r1 a1 
11:r1 a1 r1 
12:r0 r1 a1 r1 
14:r0 a0 r0 r1 a1 r1 
13:r0 r1 a1 r1 a0 

Distribution of distances from initial state:
[d=distance, h=occurrence count, c=cumulative occurrence count]
d:h[ c]
0:11]
1:23]
2:36]
3:4[10]
4:2[12]
5:2[14]
6:1[15]
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


Autocomparison Matrix

There are no state pairs (x,y) where x refines y outside the diagonal.

Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


XDI Validity

'Mutual-Exclusion Element' is a valid XDI specification.

Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity


XDI State Graph Tool, Version 2.0 (Feb 17 1998 20:34:43)
Copyright © 1995-1997 Eindhoven University of Technology