XDI analysis of DecisionCall
Top  Statistics  Automorphisms  Finest Semiindependent Partition  Choice, Order Dependence, Nondeterminism  Distances  Autocomparison  XDI Validity
Processing AND/IF input stream:

1> (AND/IF_1.0
2> (NFA
3> (NAME DecisionCall)
4> (INTERPRETATION Verhoeff/XDI)
5> (NOTE Generated by DIGG, then handeditted)
6> (SYMBOLS
7> (a0 INPUT)
8> (a1 INPUT)
9> (b0 INPUT)
10> (b1 INPUT)
11> (c OUTPUT)
12> (d00 OUTPUT)
13> (d01 OUTPUT)
14> (d10 OUTPUT)
15> (d11 OUTPUT)
16> )
17> (STATES
18> (0 BOX INITIAL)
19> (1 TRANSIENT)
20> (2 TRANSIENT)
21> (3 BOX)
22> (4 BOX)
23> (5 TRANSIENT)
24> (6 TRANSIENT)
25> (7 TRANSIENT)
26> (8 TRANSIENT)
27> (9 TRANSIENT)
28> (10 TRANSIENT)
29> (11 TRANSIENT)
30> (12 TRANSIENT)
31> (13 TRANSIENT)
32> (14 TRANSIENT)
33> (15 TRANSIENT)
34> (16 TRANSIENT)
35> (17 BOX)
36> (18 BOX)
37> (19 TRANSIENT)
38> )
39> (TRANSITIONS
40> (0 1 a0)
41> (0 2 a1)
42> (0 3 b0)
43> (0 4 b1)
44> (1 11 b0)
45> (1 5 b1)
46> (1 18 c)
47> (2 12 b0)
48> (2 6 b1)
49> (2 17 c)
50> (3 11 a0)
51> (3 12 a1)
52> (4 5 a0)
53> (4 6 a1)
54> (5 19 c)
55> (5 8 d01)
56> (6 7 c)
57> (6 8 d11)
58> (7 0 d11)
59> (8 9 b0)
60> (8 10 b1)
61> (8 0 c)
62> (9 3 c)
63> (10 4 c)
64> (11 15 c)
65> (11 8 d00)
66> (12 13 c)
67> (12 8 d10)
68> (13 0 d10)
69> (14 4 d10)
70> (14 3 d11)
71> (15 0 d00)
72> (16 4 d00)
73> (16 3 d01)
74> (17 13 b0)
75> (17 7 b1)
76> (18 15 b0)
77> (18 19 b1)
78> (19 0 d01)
79> )
80> ))


 9 symbols:
 4 input and 5 output
 20 states:
 0 demanding, 5 indifferent and 15 transient
 39 transitions:
 18 input and 21 output
Top  Statistics  Automorphisms  Finest Semiindependent Partition  Choice, Order Dependence, Nondeterminism  Distances  Autocomparison  XDI Validity

There are 4 automorphisms.
Top  Statistics  Automorphisms  Finest Semiindependent Partition  Choice, Order Dependence, Nondeterminism  Distances  Autocomparison  XDI Validity

/ a0 a1 b0 b1 c d00 d01 d10 d11 /
Top  Statistics  Automorphisms  Finest Semiindependent Partition  Choice, Order Dependence, Nondeterminism  Distances  Autocomparison  XDI Validity
 Maximally Transient
 Disabling inputs (Z^{inp}) in state(s):
 0 1 2 3 4 8 17 18
 Disabling outputs (Z^{out}) in state(s):
 14 16
 OrderIndependent input (Y^{inp})
 OrderIndependent output (Y^{out})
 Output refusal sets propate backward over inputs
 Output NonDeterministic (static)
Top  Statistics  Automorphisms  Finest Semiindependent Partition  Choice, Order Dependence, Nondeterminism  Distances  Autocomparison  XDI Validity
 There are 18 states reachable from the initial state:
[ + == 9 < distance < +inf , . == distance = +inf ]
           1  1  1  1  1  1  1  1  1  1 
 0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5  6  7  8  9 
0:  0  1  1  1  1  2  2  3  3  4  4  2  2  3  .  3  .  2  2  3 
There are 2 states unreachable from the initial state: 14 16
Initial state reachable from all states.
There are 38 state pairs where one state is unreachable from the other state.
 Shortest paths from initial state:

0:  
1:  a0 
2:  a1 
3:  b0 
4:  b1 
5:  a0 b1 
6:  a1 b1 
7:  a1 b1 c 
8:  a0 b0 d00 
9:  a0 b0 d00 b0 
10:  a0 b0 d00 b1 
11:  a0 b0 
12:  a1 b0 
13:  a1 b0 c 
14:  unreachable 
15:  a0 b0 c 
16:  unreachable 
17:  a1 c 
18:  a0 c 
19:  a0 b1 c 
 Distribution of distances from initial state:
[d=distance, h=occurrence count, c=cumulative occurrence count] 
d:  h  [ c] 
0:  1  [ 1] 
1:  4  [ 5] 
2:  6  [11] 
3:  5  [16] 
4:  2  [18] 
Top  Statistics  Automorphisms  Finest Semiindependent Partition  Choice, Order Dependence, Nondeterminism  Distances  Autocomparison  XDI Validity

There are no state pairs (x,y) where x refines y outside the diagonal.
Top  Statistics  Automorphisms  Finest Semiindependent Partition  Choice, Order Dependence, Nondeterminism  Distances  Autocomparison  XDI Validity

'DecisionCall' is a valid XDI specification.
Top  Statistics  Automorphisms  Finest Semiindependent Partition  Choice, Order Dependence, Nondeterminism  Distances  Autocomparison  XDI Validity
XDI State Graph Tool, Version 2.0 (Feb 17 1998 20:34:43)
Copyright © 19951997 Eindhoven University of Technology