XDI analysis of Chaos
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
Processing AND/IF input stream:
-----------------------------------------------------------------------------
1> (AND/IF_1.0
2> (NFA
3> (INTERPRETATION Verhoeff/XDI)
4> (NAME Chaos)
5> (SYMBOLS
6> )
7> (STATES
8> (0 INITIAL BOTTOM)
9> )
10> (TRANSITIONS
11> )
12> )
13> )
-----------------------------------------------------------------------------
-
- 0 symbols:
- 0 input and 0 output
- 1 state:
- 1 bottom, 0 demanding, 0 indifferent and 0 transient
- 0 transitions:
- 0 input and 0 output
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
-
There is 1 automorphism.
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
-
/ /
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
- Maximally Transient
- No Disabling Inputs (Zinp)
- No Disabling Outputs (Zout)
- Order-Independent input (Yinp)
- Order-Independent output (Yout)
- Output refusal sets propate backward over inputs
- Output Deterministic
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
- There are no states reachable from the initial state:
[ + == 9 < distance < +inf , . == distance = +inf ]
There is 1 state unreachable from the initial state:
Initial state reachable from all states.
All states reachable from all other states.
- Shortest paths from initial state:
- No (explicit) states reachable
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
-
There are no state pairs (x,y) where x refines y outside the diagonal.
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
-
'Chaos' is a valid XDI specification.
Top | Statistics | Automorphisms | Finest Semi-independent Partition | Choice, Order Dependence, Nondeterminism | Distances | Autocomparison | XDI Validity
XDI State Graph Tool, Version 2.0 (Feb 17 1998 20:34:43)
Copyright © 1995-1997 Eindhoven University of Technology